
July-August 2002 Army AL&T 39

Introduction
The critical importance

of software in today’s high-
tech world cannot be under-
estimated. As such, software
development teams must be
mindful of developing quality
software on time, within
budgets, and capable of
meeting the customer’s real
needs. Despite this, however,
a study by the Standish
Group in 1994 reported, “A
staggering 31 percent of proj-
ects will be canceled before
they ever get completed, 52.7
percent of projects will cost
189 percent of their original
estimates and require 222
percent more time than origi-
nally estimated, and only about 16
percent of software projects are com-
pleted on time and on budget.”

The Army is certainly not
immune from these results and
sometimes is even more susceptible.
One reason may be that DOD sys-
tems tend to be more complex and
have more diverse requirements. In a
recent Army project failure, the origi-
nal project estimate was 18-24
months for completion at a cost of
$22 million. The reality was 4 years,
$70-$110 million, and the project was
canceled with no delivery. The pro-
gram manager (PM) noted the fol-
lowing as some of the reasons for the
failure:

• Extremely high defect count
with poor resolution trend,

• Negative combat developer
feedback on system performance,

• Underestimated magnitude of
the work, and

• Inadequate monitoring of daily
and weekly requirements.

Inadequate requirements deter-
mination is often the cause of these
abysmal results. Requirement errors
are likely to be the most common

type of error and the most expensive
to fix. Thus, proper software require-
ments definition is of the utmost
importance.

Team Skills
To properly manage software

requirements, the development team
must possess the following six critical
skills:

Team Skill 1, Analyzing The Prob-
lem. Developers must have a full
understanding of the user’s environ-
ment, the problem domain. This
requires involvement of all stake-
holders. Stakeholders can be the
users, who are ultimately the sol-
diers; the customers, Army Training
and Doctrine Command (TRADOC)
System Managers (TSMs) who repre-
sent the user; materiel developers;
and regulatory overseers, such as the
Department of the Army and DOD.
The Army is skilled in analyzing the
problem and aware of its importance.
In fact, DoD 5000.2-R states that con-
tractors must be chosen partly on
their appropriate domain experience.
Unfortunately, because TSMs repre-
sent the user and are considered sub-
ject matter experts (SMEs), they are
often mistaken for the actual user.

The concern with this is that
many SMEs are not aware of
the real problem. Thus, they
don’t address the require-
ments that the actual user
needs.

Team Skill 2, Defining
The System. User needs and
the problem domain must
be defined in a vision docu-
ment, which is the single
most important document in
a software project. The vision
document captures user
needs, system features, and
other common project
requirements. It is a living
document. It is not the
vision provided by the
TRADOC commander, which

is a very high level abstraction, docu-
mented as future operational capa-
bilities or in mission needs state-
ments. The vision document is
closely related to the operational
requirements document (ORD). But
what DOD calls requirements is
really a definition of system features,
not functional requirements. These
features can be considered the sys-
tem’s nonfunctional requirements,
those that deal with quality of service
(i.e., reliability, availability, and
maintainability).

Here, the Army is a master. The
work involved up to writing an ORD
is vast; the work involved in writing
the ORD is epic. The Army spends a
great deal of time ensuring the right
choice to fulfill a need is a materiel
one, and then we properly assign the
monumental task of building it to a
PM.

Team Skill 3, Understanding User
Needs. This skill consists of several
techniques and subskills necessary to
elicit the proper requirements from
the user. The developer must include
all stakeholders to gain the under-
standing of the problem domain. The
techniques are pretty straightfor-
ward: interviewing, workshops,

MANAGING
SOFTWARE

REQUIREMENTS
MAJ Joseph P. Dupont and
MAJ Robert W. Cummins Jr.

40 Army AL&T July-August 2002

brainstorming, storyboarding, role-
playing, prototyping, and applying
use cases—a modern approach to
software development. There are
some great techniques, but the Army
does not benefit from all of them
because there is little or no training.

Team Skill 4, Managing Scope.
This involves staying within budget
and schedule with reasonable flexi-
bility. Managing the scope properly
means keeping requirements in per-
spective. For example, the Army
needs to determine if the feature is
really necessary or if it is just nice to
have. Once a requirements baseline
is established, the PM must make
tough decisions to keep require-
ments “creep” in check. As users and
customers begin to understand the
solution domain (i.e., what is possi-
ble and what is available), they are
going to want more.

Another important aspect of this
skill is choosing the right develop-
mental model: waterfall, spiral, or
iterative. Each has value but must be
applied under the right circum-
stances. The waterfall model (Figure
1) is normally used when a customer
must have a full working version on

the first drop. The drawback is that
requirements must be known upfront
before any work begins.

The spiral model (Figure 2) works
best when time is not of the essence
and there isn’t a clear understanding
of the requirements. It becomes a
technique to help flush out the
requirements by establishing base-
line requirements, analyzing devel-
opmental risk, and building proto-
types. Users and customers examine
the prototypes and the process starts
over. The drawback is that the cus-
tomer doesn’t receive a working
product very quickly and, quite often,
wants the prototype, which is not
fully functional.

The iterative model (Figure 3)
can be considered the best of both
worlds. It employs the benefits of
both to achieve a fully functional
product for earlier release to the cus-
tomer. The drawback here is the user
only gets a subset of the required fea-
tures at each release.

Team Skill 5, Refining The System
Definition. This skill involves remov-
ing ambiguity in each domain. Sim-
ply documenting the definition of the
domain will create as many interpre-
tations as there are readers. Methods
must be employed to specify the

requirements in such a manner
so there is only one interpreta-

tion. Some methods to
accomplish this are

through specification
languages, such as

the Vienna
Develop-

ment

Method (VDM) and Z (pronounced,
Zed), through the Unified Modeling
Language, pseudocode, finite state
machines, and others. The features
found in the ORD are ambiguous
requirements. They get refined in the
User’s Functional Description (UFD)
and the Software Requirements
Specification (SRS).

The Army also does a pretty good
job in this area. The UFD is the com-
bat developer’s first stab at specifying
requirements and providing addi-
tional constraints, whereas the SRS is
the materiel developer’s first stab at
alleviating ambiguity.

Team Skill 6, Building The Right
System. This skill includes a multi-
tude of techniques to keep the proj-
ect on schedule and to release a
product that pleases the customer.
Such techniques include verifying
requirements versus validating oper-
ation, requirements traceability, con-
figuration management (CM), test-
ing, and return on investment. A
product that pleases the customer
may not necessarily be the product
the customer requested. It is impor-
tant to provide customers a product
that meets their needs; however,
what they ask for and what they actu-
ally get may be two different things.

The Jury Says
To validate some of our theories,

we interviewed four separate PMs
and/or project leaders working in the
areas of software development, soft-
ware acquisition, or software systems
development. The interviews were
conducted using a questionnaire. All
PMs we interviewed stated that the
users of their system were soldiers
(warfighters). They also stated that

Figure 1.
Waterfall
model

their customers were the TSMs, func-
tional proponents (schoolhouses), or
battlefield functional area (BFA) sys-
tems—further identified as the pri-
mary stakeholder. The primary stake-
holder provided them with the ORD
and approved the delivered function-
ality of their system and the system
requirements. Working groups,
attended by the PM, primary stake-
holder, and contractors, initially dis-
cussed the preliminary design of the
system in brainstorming sessions.
The SRS began to take form during
these sessions and was given to the
contractor for initial development.
Based on input from the PM, the pri-

mary stakeholder established the pri-
ority of requirements in the SRS. The
group met periodically to review
requirements and conduct critical
design reviews to see how well the
proposed system was meeting those
requirements.

All PMs agreed that the primary
stakeholder did not fully represent
user views. They commented that
they were understaffed and not
trained to properly elicit user
requirements. In reality, most PMs
were gathering requirements from
users when they were training or
testing them on their system. The
PMs then needed to take these

requirements back to the primary
stakeholder for approval. Sometimes
this was an easy undertaking, but
most of the time, it required the PM
to do a lot of selling of user-provided
requirements.

All PMs identified contractors as
their developers. Once the require-
ments were identified, it was up to
the contractor to build the system.
The contractor determined the
amount of risk associated with sys-
tem development and negotiated the
baseline with the PM. The contrac-
tors organized, verified, and traced
system requirements to ensure that
the requirements were met. Some

July-August 2002 Army AL&T 41

Figure 2.
Spiral model

42 Army AL&T July-August 2002

PMs were unfamiliar with the con-
tractors’ CM methods, and others
used various CM tools of their own to
control and track the baseline. One
PM office actually used an independ-
ent contractor to maintain CM.

In developing requirements, the
PMs also had to contend with the
regulatory overseers. All PMs identi-
fied the Office of the Assistant Secre-
tary of the Army for Acquisition,
Logistics and Technology and other
staff agencies as overseers. These
organizations provided specific guid-
ance for the development of software
systems. They did not send represen-
tatives to any of the working groups,
but they were the review authority
and provided the final approval for
the system under development.

Most PMs stated that they used
the spiral or iterative method in their
development approach, but couldn’t
necessarily explain those models. It
was determined that the costly
method of test, fix, and test again was
being used. Users were brought into
the development process during
training and testing. Comments were
then provided to the PM, who went
back to the primary stakeholder for
approval, and the process started all
over.

Conclusion
Users are not brought into the

requirements analysis process; thus,
they have no input until the system is
built. This causes requirement errors
that could be avoided by including
the user earlier in the process.
Changes after a system is built cost
upwards of 50 times more than
changes early during requirement
analyses. Involving the user earlier in
the analysis process would allow the
developer to build to actual require-
ments and reduce feature creep and
the “yes, buts.” It is also important
that workgroups involve all stake-
holders in a productive session to
help define the problem and elicit
actual requirements. There are tech-
niques to do this in our software
acquisition process but they are not
used. These techniques need to be
used, in addition to training through
practical exercises. Finally, our acqui-
sition professionals need more edu-
cation specifically on software engi-
neering principles. Far too often
there is too much reliance on the
contractors’ word with no under-
standing of software development.

Figure 3.
Iterative model

MAJ JOSEPH P. DUPONT was
a graduate student at the Naval
Postgraduate School working
toward an M.S. in software engi-
neering when this article was
written. He formerly worked in the
Program Executive Office for Com-
mand, Control and Communica-
tions Systems and as an Assistant
Program Manager in the Office of
Warfighter Information Network-
Terrestrial. He is currently attend-
ing the Command and General
Staff Officers Course at Fort Leav-
enworth, KS. He holds a B.S. in
electrical engineering from the
University of New Hampshire and
can be reached at joseph.dupont@
us.army.mil.

MAJ ROBERT W. CUMMINS
JR. is a graduate student at the
Naval Postgraduate School, work-
ing toward an M.S. in software
engineering. He formerly worked
in the Office of the Deputy Chief of
Staff, Information Management,
U.S. Army Test and Evaluation
Command. Cummins holds a B.A.
in political science from Salisbury
University, Salisbury, MD, and can
be reached at robert.cumminsjr@
us.army.mil.

